In Vivo Quantification of Vcam-1 Expression in Renal Ischemia Reperfusion Injury Using Non-Invasive Magnetic Resonance Molecular Imaging
نویسندگان
چکیده
RATIONALE AND OBJECTIVE Vascular cell adhesion molecule-1 (VCAM-1) is upregulated in ischemia reperfusion injury (IRI), persisting after restoration of blood flow. We hypothesized that microparticles of iron oxide targeting VCAM-1 (VCAM-MPIO) would depict "ischemic memory" and enable in vivo assessment of VCAM-1 expression. METHODOLOGY AND FINDINGS Mice subject to unilateral, transient (30 minutes) renal ischemia and subsequent reperfusion received intravenous VCAM-MPIO (4.5 mg iron/kg body weight). Contrast agent bound rapidly (<30 minutes) in IRI-kidneys and appeared as intensely low signal areas by MRI in vivo. Automated segmentation and quantification yielded MPIO contrast volumes of 5991±354×10(6) µm(3) in IRI vs. 87±7×10(6) µm(3) in kidneys with no surgical intervention (P<0.001); 90±8×10(6) µm(3) in IRI kidneys exposed to control (IgG-MPIO) and 625±80×10(6) µm(3), in IRI kidneys pre-treated with a blocking dose of VCAM-1 antibody (P<0.001). In keeping with quantitative MRI data, VCAM-1 mRNA expression in IRI was 65-fold higher than in kidneys without surgical intervention (3.06±0.63 vs. 0.05±0.02, P<0.001). Indeed VCAM-1 mRNA expression and VCAM-MPIO contrast volume were highly correlated (R(2)=0.901, P<0.01), indicating that quantification of contrast volume reflected renal VCAM-1 transcription. Serial imaging showed VCAM-MPIO accumulation at target within 30 minutes, persisting for ≥90 minutes, while unbound VCAM-MPIO was cleared rapidly from blood, with sequestration by mac-3 positive Kupffer cells in the liver and monocyte/macrophages in the spleen. CONCLUSIONS (1) VCAM-MPIO detected VCAM-1 expression and defined its 3-dimensional distribution, revealing "ischemic memory" in renal IRI; (2) automated volumetric quantification of VCAM-MPIO accurately reflected tissue levels of VCAM-1 mRNA; and (3) VCAM-MPIO bound rapidly to target with active sequestration of unbound MPIO in the liver and spleen.
منابع مشابه
Evaluating the Recovery Process of Renal Ischemia/Reperfusion Injury in Rats Using Small-Animal SPECT
Background: Renal injuries associated with ischemia/reperfusion are a prevalent clinical phenomenon that can cause the emergence of progressive kidney diseases, eventually leading to chronic kidney injuries. The present study was conducted to evaluate the results obtained from non-invasive imaging using small-animal SPECT and investigate the recovery process in an animal model of renal ischemia...
متن کاملMagnetic Resonance Imaging (MRI) Analysis of Ischemia/Reperfusion in Experimental Acute Renal Injury.
Imbalance between renal oxygen delivery and demand in the first hours after reperfusion is suggested to be decisive in the pathophysiological chain of events leading to ischemia-induced acute kidney injury. Here we describe blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) for continuous monitoring of the deoxyhemoglobin-sensitive MR parameter T 2* in the renal cortex, o...
متن کاملHigh Temporal Resolution Parametric MRI Monitoring of the Initial Ischemia/Reperfusion Phase in Experimental Acute Kidney Injury
Ischemia/reperfusion (I/R) injury, a consequence of kidney hypoperfusion or temporary interruption of blood flow is a common cause of acute kidney injury (AKI). There is an unmet need to better understand the mechanisms operative during the initial phase of ischemic AKI. Non-invasive in vivo parametric magnetic resonance imaging (MRI) may elucidate spatio-temporal pathophysiological changes in ...
متن کاملThe Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage
Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effe...
متن کاملAttenuating of NF-Κb/VCAM-1 Expression in Middle Cerebral Artery Occlusion (MCAO) Model by Viola Odorata: Protection Against Injury Ischemia- Reperfusion Injury in Rats
Background: The death of neurons and cerebral edema are the main consequences of stroke. However, inflammatory processes play a key role in aggravating cerebral damage following stroke. The aim of this study was to investigate the effects of Viola odorant extract (VOE) on infarct volume (IV), neurologic deficits (ND), and expression of NF-κB and VCAM-1 in the MCAO model. Method: The animals we...
متن کامل